Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674068

RESUMEN

Lifespan is a complex quantitative trait involving genetic and non-genetic factors as well as the peculiarities of ontogenesis. As with all quantitative traits, lifespan shows considerable variation within populations and between individuals. Drosophila, a favourite object of geneticists, has greatly advanced our understanding of how different forms of variability affect lifespan. This review considers the role of heritable genetic variability, phenotypic plasticity and stochastic variability in controlling lifespan in Drosophila melanogaster. We discuss the major historical milestones in the development of the genetic approach to study lifespan, the breeding of long-lived lines, advances in lifespan QTL mapping, the environmental factors that have the greatest influence on lifespan in laboratory maintained flies, and the mechanisms, by which individual development affects longevity. The interplay between approaches to study ageing and lifespan limitation will also be discussed. Particular attention will be paid to the interaction of different types of variability in the control of lifespan.


Asunto(s)
Drosophila melanogaster , Longevidad , Animales , Longevidad/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Sitios de Carácter Cuantitativo , Procesos Estocásticos , Variación Genética , Interacción Gen-Ambiente , Envejecimiento/genética , Envejecimiento/fisiología , Ambiente , Fenotipo
2.
Biochimie ; 218: 162-173, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37863280

RESUMEN

Cardiometabolic diseases (CMDs) are complex disorders with a heterogenous phenotype, which are caused by multiple factors including genetic factors. Single nucleotide polymorphisms (SNPs) rs45539933 (p.Ala64Thr), rs10011540 (c.-112A>C), rs3811791 (c.-1766A>G), and rs1800592 (c.-3826A>G) in the UCP1 gene have been analyzed for association with CMDs in many studies providing controversial results. However, previous studies only considered individual UCP1 SNPs and did not evaluate them in an integrated manner, which is a more powerful approach to uncover genetic component of complex diseases. This study aimed to investigate associations between UCP1 genotype combinations and CMDs or CMD risk factors in the context of non-genetic factors. We performed multiple logistic regression analysis and proposed new methodology of testing different combinations of SNP genotypes. We found that probability of CMDs increased in presence of the three-SNP combination of genotypes with minor alleles of c.-3826A>G and p.Ala64Thr and wild allele of c.-112A>C, with increasing age, body mass index (BMI), body fat percentage (BF%) and may differ between sexes and between countries. The combination of genotypes with c.-3826A>G minor allele and wild homozygotes of c.-112A>C and p.Ala64Thr was associated with increased probability of diabetes. While combination of genotypes with minor alleles of all three SNPs reduced the CMD probability. The present results suggest that age, BMI, sex, and UCP1 three-SNP combinations of genotypes significantly contribute to CMD probability. Varying of c.-112A>C alleles in the genotype combination with minor alleles of c.-3826A>G and p.Ala64Thr markedly changes CMD probability.


Asunto(s)
Enfermedades Cardiovasculares , Canales Iónicos , Humanos , Proteína Desacopladora 1/genética , Canales Iónicos/genética , Genotipo , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Alelos , Enfermedades Cardiovasculares/genética , Predisposición Genética a la Enfermedad
3.
Front Genet ; 13: 1081088, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531247

RESUMEN

The spatial organization of chromosomes is involved in regulating the majority of intranuclear processes in higher eukaryotes, including gene expression. Drosophila was used as a model to discover many transcription factors whose homologs play a key role in regulation of gene expression in mammals. According to modern views, a cohesin complex mostly determines the architecture of mammalian chromosomes by forming chromatin loops on anchors created by the CTCF DNA-binding architectural protein. The role of the cohesin complex in chromosome architecture is poorly understood in Drosophila, and CTCF is merely one of many Drosophila architectural proteins with a proven potential to organize specific long-range interactions between regulatory elements in the genome. The review compares the mechanisms responsible for long-range interactions and chromosome architecture between mammals and Drosophila.

4.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36232546

RESUMEN

The spatio-temporal regulation of gene expression determines the fate and function of various cells and tissues and, as a consequence, the correct development and functioning of complex organisms. Certain mechanisms of gene activity regulation provide adequate cell responses to changes in environmental factors. Aside from gene expression disorders that lead to various pathologies, alterations of expression of particular genes were shown to significantly decrease or increase the lifespan in a wide range of organisms from yeast to human. Drosophila fruit fly is an ideal model system to explore mechanisms of longevity and aging due to low cost, easy handling and maintenance, large number of progeny per adult, short life cycle and lifespan, relatively low number of paralogous genes, high evolutionary conservation of epigenetic mechanisms and signalling pathways, and availability of a wide range of tools to modulate gene expression in vivo. Here, we focus on the organization of the evolutionarily conserved signaling pathways whose components significantly influence the aging process and on the interconnections of these pathways with gene expression regulation.


Asunto(s)
Proteínas de Drosophila , Longevidad , Envejecimiento/genética , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Humanos , Insulina/metabolismo , Longevidad/genética
5.
Front Genet ; 13: 734208, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910225

RESUMEN

A transition from one developmental stage to another is accompanied by activation of developmental programs and corresponding gene ensembles. Changes in the spatial conformation of the corresponding loci are associated with this activation and can be investigated with the help of the Chromosome Conformation Capture (3C) methodology. Application of 3C to specific developmental stages is a sophisticated task. Here, we describe the use of the 3C method to study the spatial organization of developmental loci in Drosophila larvae. We critically analyzed the existing protocols and offered our own solutions and the optimized protocol to overcome limitations. To demonstrate the efficiency of our procedure, we studied the spatial organization of the developmental locus Dad in 3rd instar Drosophila larvae. Differences in locus conformation were found between embryonic cells and living wild-type larvae. We also observed the establishment of novel regulatory interactions in the presence of an adjacent transgene upon activation of its expression in larvae. Our work fills the gap in the application of the 3C method to Drosophila larvae and provides a useful guide for establishing 3C on an animal model.

6.
Front Genet ; 12: 733937, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616432

RESUMEN

A constellation of chromosome conformation capture methods (С-methods) are an important tool for biochemical analysis of the spatial interactions between DNA regions that are separated in the primary sequence. All these methods are based on the long sequence of basic steps of treating cells, nuclei, chromatin, and finally DNA, thus representing a significant technical challenge. Here, we present an in-depth study of the basic steps in the chromatin conformation capture procedure (3С), which was performed using Drosophila Schneider 2 cells as a model. We investigated the steps of cell lysis, nuclei washing, nucleoplasm extraction, chromatin treatment with SDS/Triton X-100, restriction enzyme digestion, chromatin ligation, reversion of cross-links, DNA extraction, treatment of a 3C library with RNases, and purification of the 3C library. Several options were studied, and optimal conditions were found. Our work contributes to the understanding of the 3C basic steps and provides a useful guide to the 3C procedure.

7.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799739

RESUMEN

The chromatin remodeler SWI/SNF is an important participant in gene activation, functioning predominantly by opening the chromatin structure on promoters and enhancers. Here, we describe its novel mode of action in which SWI/SNF factors mediate the targeted action of an enhancer. We studied the functions of two signature subunits of PBAP subfamily, BAP170 and SAYP, in Drosophila. These subunits were stably tethered to a transgene reporter carrying the hsp70 core promoter. The tethered subunits mediate transcription of the reporter in a pattern that is generated by enhancers close to the insertion site in multiple loci throughout the genome. Both tethered SAYP and BAP170 recruit the whole PBAP complex to the reporter promoter. However, we found that BAP170-dependent transcription is more resistant to the depletion of other PBAP subunits, suggesting that BAP170 may play a more critical role in establishing enhancer-dependent transcription.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos/genética , Factores de Transcripción/genética , Transcripción Genética , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta/métodos , Humanos , Hibridación in Situ/métodos , Modelos Genéticos , Regiones Promotoras Genéticas/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional
8.
Cells ; 9(7)2020 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-32635644

RESUMEN

Transcriptional enhancers are major genomic elements that control gene activity in eukaryotes. Recent studies provided deeper insight into the temporal and spatial organization of transcription in the nucleus, the role of non-coding RNAs in the process, and the epigenetic control of gene expression. Thus, multiple molecular details of enhancer functioning were revealed. Here, we describe the recent data and models of molecular organization of enhancer-driven transcription.


Asunto(s)
Cromatina/metabolismo , Elementos de Facilitación Genéticos/fisiología , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Humanos , Regiones Promotoras Genéticas/genética
9.
Cells ; 9(7)2020 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-32664620

RESUMEN

The genomes of all organisms abound with various cis-regulatory elements, which control gene activity. Transcriptional enhancers are a key group of such elements in eukaryotes and are DNA regions that form physical contacts with gene promoters and precisely orchestrate gene expression programs. Here, we follow gradual evolution of this regulatory system and discuss its features in different organisms. In eubacteria, an enhancer-like element is often a single regulatory element, is usually proximal to the core promoter, and is occupied by one or a few activators. Activation of gene expression in archaea is accompanied by the recruitment of an activator to several enhancer-like sites in the upstream promoter region. In eukaryotes, activation of expression is accompanied by the recruitment of activators to multiple enhancers, which may be distant from the core promoter, and the activators act through coactivators. The role of the general DNA architecture in transcription control increases in evolution. As a whole, it can be seen that enhancers of multicellular eukaryotes evolved from the corresponding prototypic enhancer-like regulatory elements with the gradually increasing genome size of organisms.


Asunto(s)
Evolución Molecular , Regulación de la Expresión Génica , Transcripción Genética , Animales , Elementos de Facilitación Genéticos , Tamaño del Genoma , Humanos , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...